任务4.1 二进制计数器设计功能仿真

4.1.1 二进制计数器

- 一、二进制计数器的概念
- 二、二进制计数器的分类
- 三、3位二进制加法计数器的设计
- 四、3位二进制加法计数器功能演示

一、二进制计数器的概念

- 二进制计数器是按二进制规则进行计数的计数器。
- 二进制计数器触发器的个数为n,

模为M=2n。

二、二进制计数器的分类

1.按时钟控制方式

同步二进制计数器异步二进制计数器

2.按计数时数字的增减

二进制加法计数器

二进制减法计数器

二进制可逆计数器

三、3位二进制加法计数器的设计

1. 加法计数器的设计方法

2. 3位二进制加法计数器的设计步骤

三、3位二进制加法计数器的设计

1.加法计数器的方法

- (1) 确定有效状态
- (2) 画状态转换图
- (3) 列状态转换表
- (4) 列方程
- (5) 画逻辑图

(1) 确定有效状态

✓ 3位二进制加法计数器状态分别是S₀、S₁、…、S₇, 共计8个状态,并且都属于有效状态。

(2) 画状态转换图

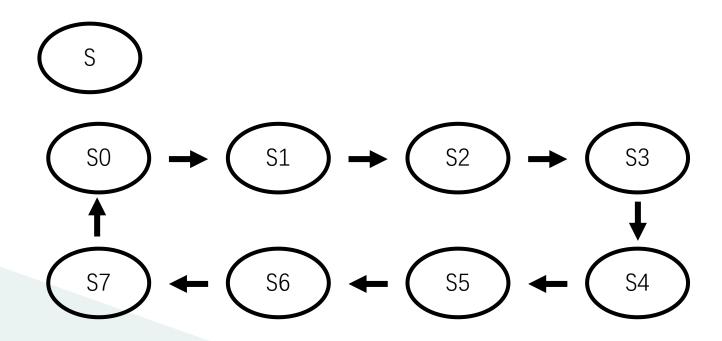


图1 3位二进制加法计数器状态转换图

- (3) 列状态转换表
- ✓状态编码

计数器8个状态分别是000、001、...111。

✓状态分配

触发器的组合状态与计数器的8个有效状态——对应。

✓ 确定逻辑变量

输入变量: Q₂nQ₁nQ₀n

输出变量: Q₂n+1Q₁n+1Q₀n+1

(3) 列状态转换表 表1 3位二进制加法计数器状态转换表

输入脉冲数	触发器状态	触发器状态	输出
CP	$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	C
0	0 0 0	0 0 1	0
1	0 0 1	0 1 0	0
2	0 1 0	0 1 1	0
3	0 1 1	1 0 0	0
4	1 0 0	1 0 1	0
5	1 0 1	1 1 0	0
6	1 1 0	1 1 1	0
7	1 1 1	0 0 0	1

(4) 列方程

✓列出触发器状态方程

$$Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n + Q_2^n \overline{Q_1^n} \overline{Q_0^n} + Q_2^n \overline{Q_1^n} Q_0^n + Q_2^n Q_1^n \overline{Q_0^n}$$

Q1 (Q_0^n			
Q_{3}^{n}	00	01	11	10
0	0	0	1	0
1	1	1	0	1

图1 Q2次态卡诺图

表1 3位二进制加法计数器状态转换表

输入脉冲数	触发器状态	触发器状态	输出
CP	$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	C
0	0 0 0	0 0 1	0
1	0 0 1	0 1 0	0
2	0 1 0	0 1 1	0
3		1 0 0	0
4		1 0 1	0
5	0	1 1 0	0
6	1 0	1 1	0
7	1 1 1	0 0 0	1

(4) 列方程

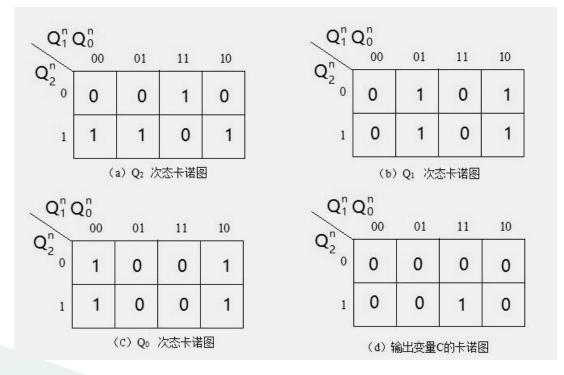


图2 Q₂n+1Q₁n+1Q₀n+1/C卡诺图

(4) 列方程

✓ 触发器状态方程

$$Q_{2}^{n+1} = \overline{Q_{2}^{n}} Q_{1}^{n} Q_{0}^{n} + Q_{2}^{n} \overline{Q_{1}^{n}} Q_{0}^{n}$$

$$Q_{1}^{n+1} = \overline{Q_{1}^{n}} Q_{0}^{n} + Q_{1}^{n} \overline{Q_{0}^{n}}$$

$$Q_{0}^{n+1} = \overline{Q_{0}^{n}}$$

✓ 输出方程

$$C = Q_2^n Q_1^n Q_0^n$$

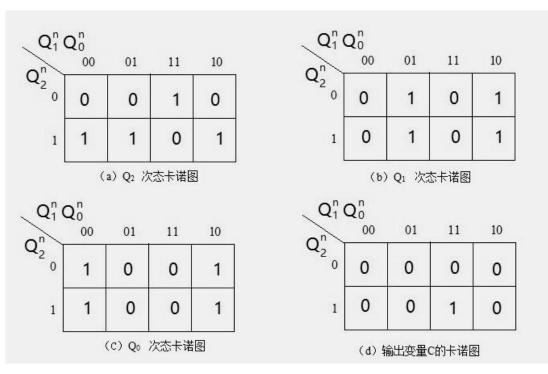


图2 Q₂n+1Q₁n+1Q₀n+1/C卡诺图

(4) 列方程

✓ 触发器状态方程

$$Q_2^{n+1} = \underline{Q_1^n Q_0^n Q_2^n} + \underline{Q_1^n Q_0^n} Q_2^n$$

$$Q_1^{n+1} = \underline{Q_0^n} \overline{Q_1^n} + \underline{\overline{Q_0^n}} Q_1^n$$

$$Q_0^{n+1} = \overline{Q_0^n} = 1 \bullet \overline{Q_0^n} + 1 \bullet \overline{Q_0^n}$$

✓JK触发器特性方程

$$Q^{n+1} = \overline{JQ^n} + \overline{KQ^n}$$

✓JK触发器驱动方程

$$K_2 = J_2 = Q_1^n Q_0^n$$

$$K_1 = J_1 = Q_0^n$$

$$K_0 = J_0 = 1$$

✓ 输出方程

$$C = Q_2^n Q_1^n Q_0^n$$

(5) 画逻辑图

✓JK触发器驱动方程

$$K_2 = J_2 = Q_1^n Q_0^n$$

$$K_1 = J_1 = Q_0^n$$

$$K_0 = J_0 = 1$$

✓ 输出方程

$$C = Q_2^n Q_1^n Q_0^n$$

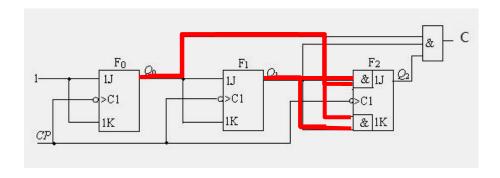


图3 3位二进制加法计数器逻辑图

四、3位二进制加法计数器功能演示

一个计数周期CP脉冲

0 0 0

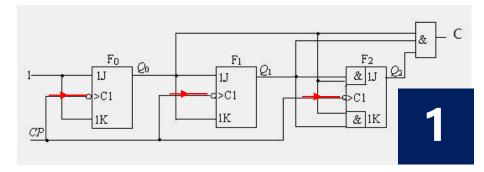


图3 3位二进制加法计数器逻辑图

4.1.2 4位二进制加法计数器的设计

设计要求: 请用4个JK触发器设计一个二进制计数器。

(1) 确定有效状态

✓4位二进制加法计数器,其状态分别是 S_0 、 S_1 、...、 S_{15} ,共计16个状态,并且都属于有效状态。

(2) 画状态转换图

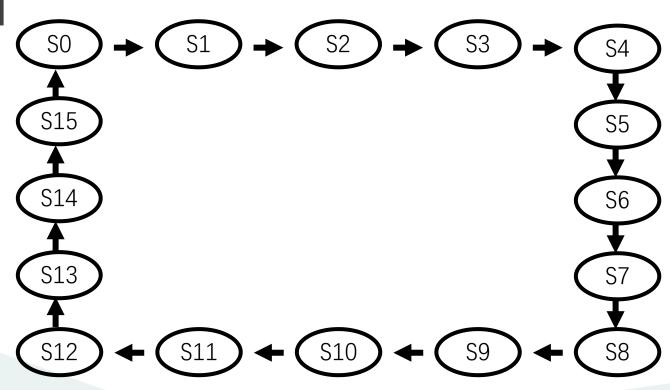


图1 二进制加法计数器74ls163状态转换图

(3) 列状态转换表

✓状态编码

计数器16个状态分别是0000、0001、...1111。

✓状态分配

4个JK触发器的组合状态与计数器的16个有效状态——对应。

✓ 确定逻辑变量

输入变量: Q₃nQ₂nQ₁nQ₀n

输出变量: Q₃n+1Q₂n+1Q₁n+1Q₀n+1

(3) 列状态转换表

表1 4位二进制加法计数器状态转换表

输入脉冲数	触发器状态	触发器状态
CP	$Q_3^n Q_2^n Q_1^n Q_0^n$	$Q_3^{n+1} Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$
0	0 0 0 0	0 0 0 1
1	0 0 0 1	0 0 1 0
2	0 0 1 0	0 0 1 1
3	0 0 1 1	0 1 0 0
4	0 1 0 0	0 1 0 1
5	0 1 0 1	0 1 1 0
6	0 1 1 0	0 1 1 1
7	0 1 1 1	1 0 0 0
8	1 0 0 0	1 0 0 1
9	1 0 0 1	1 0 1 0
10	1 0 1 0	1 0 1 1
11	1 0 1 1	1 1 0 0
12	1 1 0 0	1 1 0 1
13	1 1 0 1	1 1 1 0
14	1 1 1 0	1 1 1 1
15	1 1 1 1	0 0 0 0

(4) 列方程

$\begin{array}{ll} Q_{3}^{\mathrm{n+1}} &= \overline{Q_{3}^{\mathrm{n}}} Q_{2}^{\mathrm{n}} Q_{1}^{\mathrm{n}} Q_{0}^{\mathrm{n}} + Q_{3}^{\mathrm{n}} \overline{Q_{2}^{\mathrm{n}}} Q_{1}^{\mathrm{n}} Q_{0}^{\mathrm{n}} + Q_{3}^{\mathrm{n}} \overline{Q_{2}^{\mathrm{n}}} \overline{Q_{1}^{\mathrm{n}}} Q_{0}^{\mathrm{n}} + Q_{3}^{\mathrm{n}} \overline{Q_{2}^{\mathrm{n}}} Q_{1}^{\mathrm{n}} \overline{Q_{0}^{\mathrm{n}}} \\ &+ Q_{3}^{\mathrm{n}} \overline{Q_{2}^{\mathrm{n}}} Q_{1}^{\mathrm{n}} Q_{0}^{\mathrm{n}} + Q_{3}^{\mathrm{n}} Q_{2}^{\mathrm{n}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{0}^{\mathrm{n}}} + Q_{3}^{\mathrm{n}} Q_{2}^{\mathrm{n}} \overline{Q_{1}^{\mathrm{n}}} Q_{0}^{\mathrm{n}} + Q_{3}^{\mathrm{n}} Q_{2}^{\mathrm{n}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{0}^{\mathrm{n}}} \\ &+ Q_{3}^{\mathrm{n}} \overline{Q_{2}^{\mathrm{n}}} Q_{1}^{\mathrm{n}} Q_{0}^{\mathrm{n}} + Q_{3}^{\mathrm{n}} Q_{2}^{\mathrm{n}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{0}^{\mathrm{n}}} + Q_{3}^{\mathrm{n}} Q_{2}^{\mathrm{n}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{0}^{\mathrm{n}}} + Q_{3}^{\mathrm{n}} \overline{Q_{2}^{\mathrm{n}}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{0}^{\mathrm{n}}} - Q_{0}^{\mathrm{n}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{1}^{\mathrm{n}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q_{1}^{\mathrm{n}}} \overline{Q$

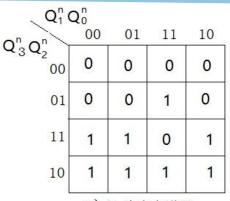

$Q_1^n Q_2^n$	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	1	1	0	1
10	1	1	1	1

图1 Q₃次态卡诺图

表1 4位二进制加法计数器状态转换表

输入脉冲数	触发器状态	触发器状态
CP CP	$Q_3^n Q_2^n Q_1^n Q_0^n$	$Q_3^{n+1} Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$
0	0 0 0 0	0 0 0 1
1	0 0 0 1	0 0 1 0
2	0 0 1 0	0 0 1 1
3	0 0 1 1	0 1 0 0
4	0 1 0 0	0 1 0 1
5	0 1 0 1	0 1 1 0
6	0 1 1 0	0 1 1 1
7	11	1 0 0 0
8	1000	1 0 0 1
9	$\bigcup 0 \ 0$	1 0 1 0
10	1 0 1 0	1 0 1 1
11	0 1	1 1 0 0
12	100	1 1 0 1
13	1101	1 1 1 0
14	1110	1 1 1 1
15	1 1 1 1	0 0 0 0

卡诺图化简

a) Q3 次态卡诺图

$Q_1^n Q_2^n Q_2^n$	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

c)Q1次态卡诺图

Q^{r}	Q_0^n			
$Q_3^n Q_2^n$	00	01	11	10
00	0 0	0	1	0
0	1 1	1	0	1
1.	1 1	1	0	1
10	0	0	1	0
	1- \ 0	- VI	L. Miletz	1

b)Q2次态卡诺图

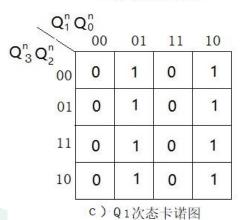
Q_1^n	O ⁿ			
$Q_3^n Q_2^n$	00	01	11	10
Q ₃ Q ₂ 00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

d)Q0次态卡诺图

图2 Q₃n+1Q₂n+1Q₁n+1Q₀n+1卡诺图

(4) 列方程

✓ 触发器状态方程


$$Q_{3}^{n+1} = Q_{3}^{n} \overline{Q_{2}^{n} Q_{1}^{n} Q_{0}^{n}} + \overline{Q_{3}^{n} Q_{2}^{n} Q_{1}^{n} Q_{0}^{n}}$$

$$Q_{2}^{n+1} = Q_{2}^{n} \overline{Q_{1}^{n} Q_{0}^{n}} + \overline{Q_{2}^{n} Q_{1}^{n} Q_{0}^{n}}$$

$$Q_{1}^{n+1} = \overline{Q_{1}^{n} Q_{0}^{n}} + Q_{1}^{n} \overline{Q_{0}^{n}}$$

$$Q_{0}^{n+1} = \overline{Q_{0}^{n}}$$

Q_1^n	00	01	11	10
$Q_3^n Q_2^n$	0	0	0	0
01	0	0	1	0
11	1	1	0	1
10	1	1	1	1

Q_1^n				
$Q_3^n Q_2^n$	00	01	11	10
00	0	0	1	0
01	1	1	0	1
11	1	1	0	1
10	0	0	1	0
	h) (19 次太	上诺因	

Q_1^n	\mathbf{Q}_0^n			
$Q_3^n Q_2^n$	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1
		183		

d)Qo次态卡诺图

图2 Q₃n+1Q₂n+1Q₁n+1Q₀n+1卡诺图

(4) 列方程

✓ 触发器状态方程

$$Q_{3}^{n+1} = Q_{2}^{n}Q_{1}^{n}Q_{0}^{n}\overline{Q_{3}^{n}} + \overline{Q_{2}^{n}Q_{1}^{n}Q_{0}^{n}}Q_{3}^{n}$$

$$Q_{2}^{n+1} = Q_{1}^{n}Q_{0}^{n}\overline{Q_{2}^{n}} + \overline{Q_{1}^{n}Q_{0}^{n}}Q_{2}^{n}$$

$$Q_{1}^{n+1} = Q_{0}^{n}\overline{Q_{1}^{n}} + \overline{Q_{0}^{n}Q_{1}^{n}}$$

$$Q_{0}^{n+1} = \overline{Q_{0}^{n}} = 1 \cdot \overline{Q_{0}^{n}} + 1 \cdot \overline{Q_{0}^{n}}$$

✓ JK触发器特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

✓ JK触发器特性方程

$$J_{3} = K_{3} = Q_{2}^{n} Q_{1}^{n} Q_{0}^{n}$$

$$K_{2} = J_{2} = Q_{1}^{n} Q_{0}^{n}$$

$$K_{1} = J_{1} = Q_{0}^{n}$$

$$K_{0} = J_{0} = 1$$

(5) 画逻辑图

✓JK触发器特性方程

$$J_{3} = K_{3} = Q_{2}^{n} Q_{1}^{n} Q_{0}^{n}$$

$$K_{2} = J_{2} = Q_{1}^{n} Q_{0}^{n}$$

$$K_{1} = J_{1} = Q_{0}^{n}$$

$$K_{0} = J_{0} = 1$$

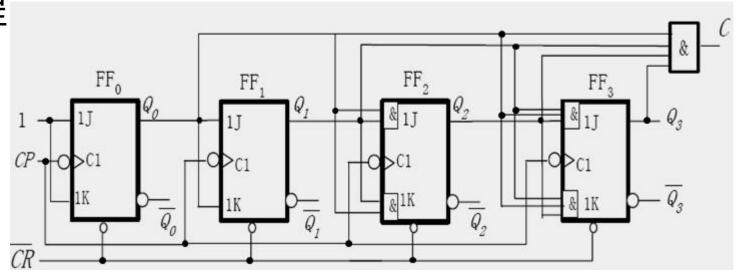
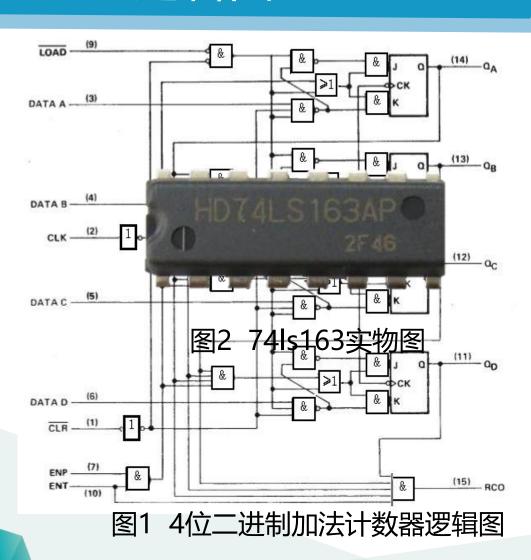
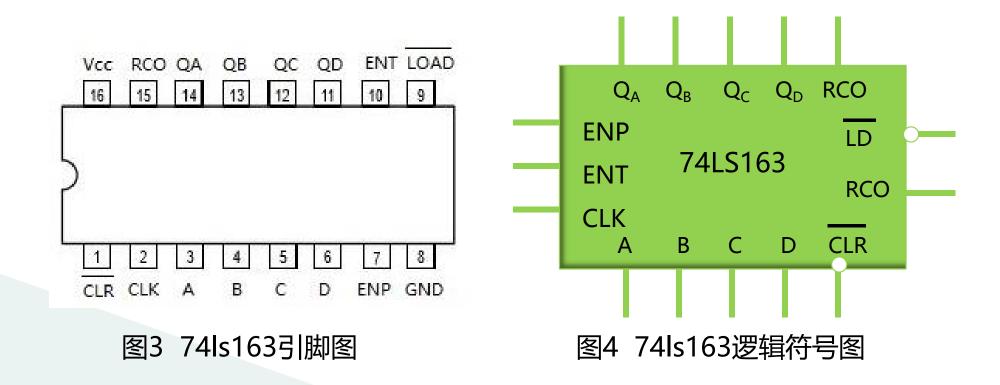
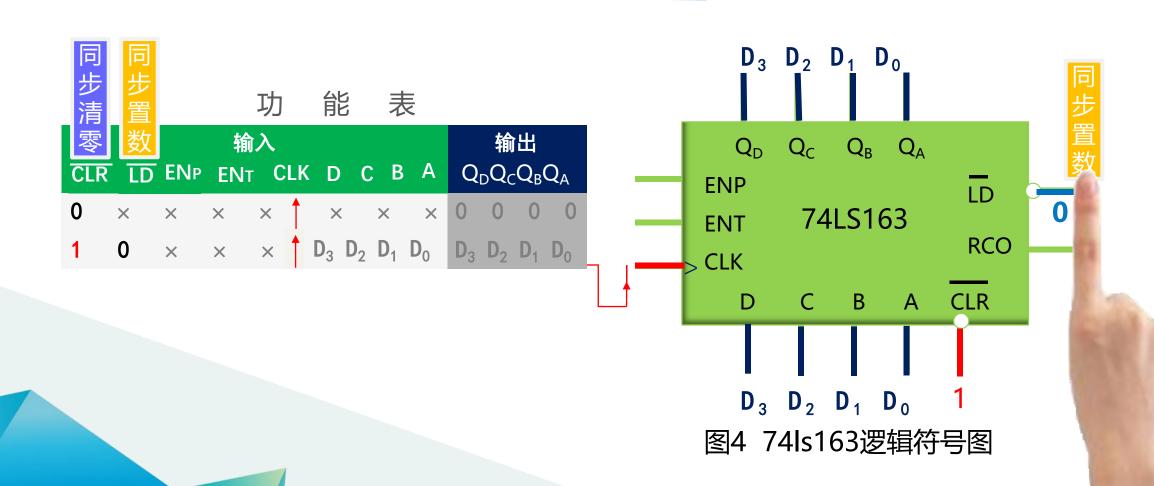
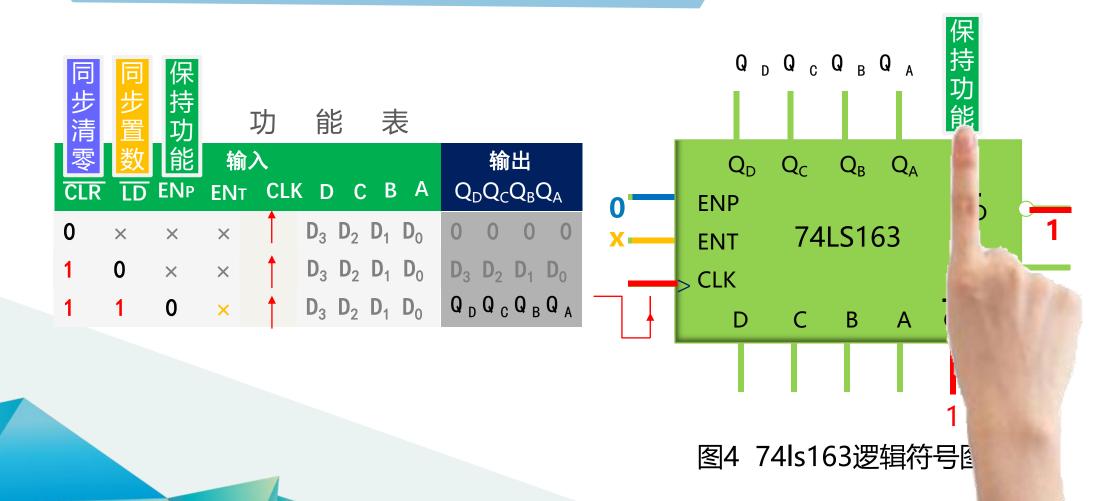
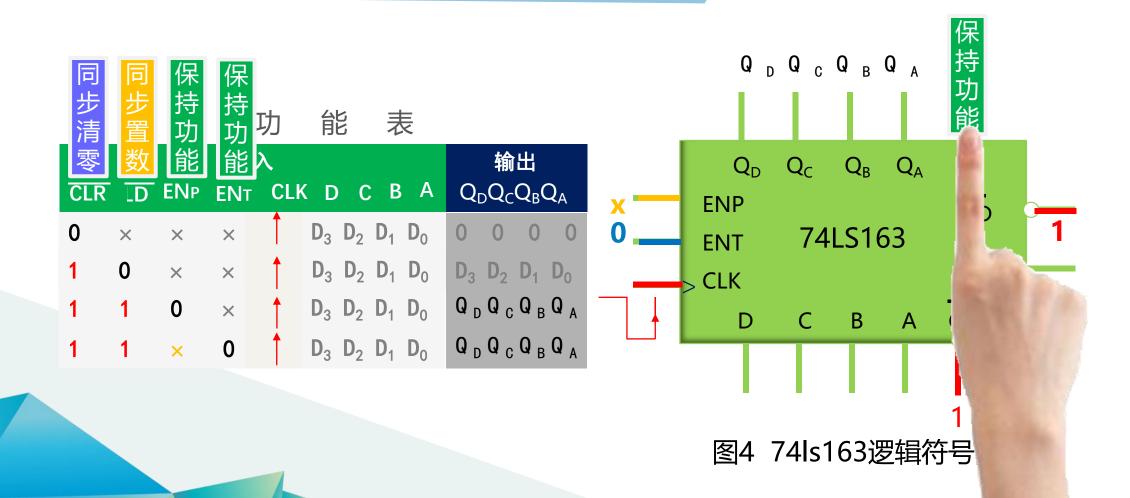



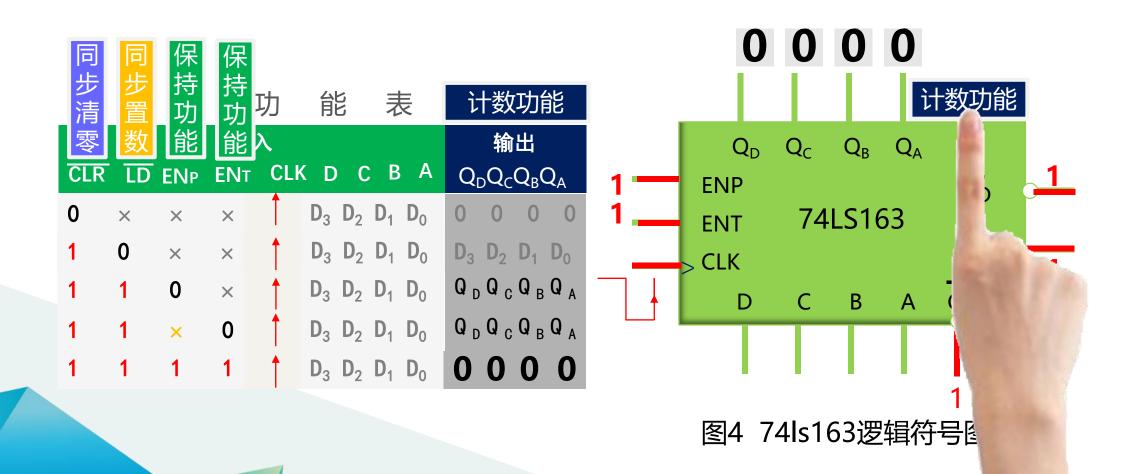
图3 4位二进制加法计数器逻辑图

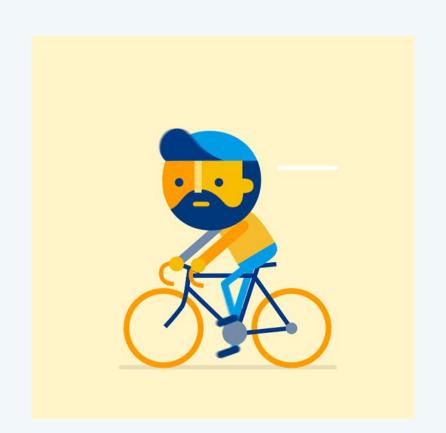

4.1.3 二进制加法计数器74LS163


74LS163是4位同步二进制加法计数器。它可以用4个下降沿JK触发器构成,也可以用上升沿D触发器构成,具有同步清零,同步置数功能。


1. 74LS163逻辑图




2. 74LS163引脚图及逻辑符号图



Thanks for watching **的的观看**

